Osteoclast cytosolic calcium, regulated by voltage-gated calcium channels and extracellular calcium, controls podosome assembly and bone resorption
نویسندگان
چکیده
The mechanisms of Ca2+ entry and their effects on cell function were investigated in cultured chicken osteoclasts and putative osteoclasts produced by fusion of mononuclear cell precursors. Voltage-gated Ca2+ channels (VGCC) were detected by the effects of membrane depolarization with K+, BAY K 8644, and dihydropyridine antagonists. K+ produced dose-dependent increases of cytosolic calcium ([Ca2+]i) in osteoclasts on glass coverslips. Half-maximal effects were achieved at 70 mM K+. The effects of K+ were completely inhibited by dihydropyridine derivative Ca2+ channel blocking agents. BAY K 8644 (5 X 10(-6) M), a VGCC agonist, stimulated Ca2+ entry which was inhibited by nicardipine. VGCCs were inactivated by the attachment of osteoclasts to bone, indicating a rapid phenotypic change in Ca2+ entry mechanisms associated with adhesion of osteoclasts to their resorption substrate. Increasing extracellular Ca2+ ([Ca2+]e) induced Ca2+ release from intracellular stores and Ca2+ influx. The Ca2+ release was blocked by dantrolene (10(-5) M), and the influx by La3+. The effects of [Ca2+]e on [Ca2+]i suggests the presence of a Ca2+ receptor on the osteoclast cell membrane that could be coupled to mechanisms regulating cell function. Expression of the [Ca2+]e effect on [Ca2+]i was similar in the presence or absence of bone matrix substrate. Each of the mechanisms producing increases in [Ca2+]i, (membrane depolarization, BAY K 8644, and [Ca2+]e) reduced expression of the osteoclast-specific adhesion structure, the podosome. The decrease in podosome expression was mirrored by a 50% decrease in bone resorptive activity. Thus, stimulated increases of osteoclast [Ca2+]i lead to cytoskeletal changes affecting cell adhesion and decreasing bone resorptive activity.
منابع مشابه
Calcium-containing crystals enhance receptor activator of nuclear factor iB ligand/macrophage colony- stimulating factor mediated osteoclastogenesis via extracellular-signal-regulated kinase and p38 pathways
Objective. Diseases associated with calcium-containing crystal deposition can lead to local bone erosion. We aimed to determine whether calcium-containing crystal-hydroxyapatite, b-tricalcium phosphate and CPPD enhanced osteoclastogenesis and to define underlying mechanisms of action. Methods. Osteoclastogenesis was studied by culturing murine RAW 264.7 osteoclast precursor cells with RANK liga...
متن کاملCortactin has an essential and specific role in osteoclast actin assembly.
Osteoclasts are essential for bone dynamics and calcium homeostasis. The cells form a tight seal on the bone surface, onto which they secrete acid and proteases to resorb bone. The seal is associated with a ring of actin filaments. Cortactin, a c-Src substrate known to promote Arp2/3-mediated actin assembly in vitro, is expressed in osteoclasts and localizes to the sealing ring. To address the ...
متن کاملCortactin Has an Essential and Specific Role in Osteoclast Actin Assembly□V
Osteoclasts are essential for bone dynamics and calcium homeostasis. The cells form a tight seal on the bone surface, onto which they secrete acid and proteases to resorb bone. The seal is associated with a ring of actin filaments. Cortactin, a c-Src substrate known to promote Arp2/3-mediated actin assembly in vitro, is expressed in osteoclasts and localizes to the sealing ring. To address the ...
متن کاملAmyloid β Peptide Enhances RANKL-Induced Osteoclast Activation through NF-κB, ERK, and Calcium Oscillation Signaling
Osteoporosis and Alzheimer's disease (AD) are common chronic degenerative disorders which are strongly associated with advanced age. We have previously demonstrated that amyloid beta peptide (Aβ), one of the pathological hallmarks of AD, accumulated abnormally in osteoporotic bone specimens in addition to having an activation effect on osteoclast (Bone 2014,61:164-75). However, the underlying m...
متن کاملEmerging Roles of L-Type Voltage-Gated and Other Calcium Channels in T Lymphocytes
In T lymphocytes, calcium ion controls a variety of biological processes including development, survival, proliferation, and effector functions. These distinct and specific roles are regulated by different calcium signals, which are generated by various plasma membrane calcium channels. The repertoire of calcium-conducting proteins in T lymphocytes includes store-operated CRAC channels, transie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 111 شماره
صفحات -
تاریخ انتشار 1990